PUBLICATIONS

Preprints

  1. Sommer, A. J., Worley, T. K., Sapountzis, P., & Coon, K. L. (2025). Comparative genomics reveals phylogenetic intermixing of Stomoxys fly, manure, and bovine mastitis-associated bacteria in dairy settings. bioRxiv, 2025-01. https://doi.org/10.1101/2025.01.31.635862

Research publications

  1. Sommer, A.J., Skarlupka, J.H., Teseo, S., Otani, S., Suen, G., Coon, K.L., Sapountzis, P., 2025. Genomic evidence for flies as carriers of zoonotic pathogens on dairy farms. npj Biofilms and Microbiomes, 11(1), pp.1-11. https://doi.org/10.1038/s41522-025-00685-y
  2. Díaz, S., Avila, F.W., Coon, K.L., 2025. Differential fitness effects of gut and reproductive tract bacteria in larval and adult stages of the yellow fever mosquito, Aedes aegypti. Acta Tropica, 265, p.107615. https://doi.org/10.1016/j.actatropica.2025.107615
  3. Sommer, A.J., Deblois, C.L., Tu, A.D., Suen, G., Coon, K.L., 2025. Opportunistic pathogens are prevalent across the culturable exogenous and endogenous microbiota of stable flies captured at a dairy facility. Veterinary Research, 56, p.40. https://doi.org/10.1186/s13567-025-01458-3
  4. Sommer, A.J., Kettner, J.E., Worley, T.K., Petrick, J., Haynie, C., Coon, K.L., 2025. Prevalence of antimicrobial resistance phenotypes and genes in stable fly-and manure-derived bacterial isolates from clinically relevant taxa in dairy settings. Journal of Applied Microbiology, 136(2), p.lxaf025. https://doi.org/10.1093/jambio/lxaf025
  5. Zhao, S. Y., Sommer, A. J., Bartlett, D., Harbison, J. E., Irwin, P., & Coon, K. L. (2024). Microbiota Composition Associates With Mosquito Productivity Outcomes in Belowground Larval Habitats. Molecular Ecology, e17614. https://doi.org/10.1111/mec.17614
  6. Foo, A., Brettell, L.E., Nichols, H.L., 2022 UW-Madison Capstone in Microbiology Students, Medina Munoz, M., Lysne, J., Dhokiya, V., Hoque, A.F., Brackney, D.E., Caragata, E.P., Hutchinson, M., Jacobs-Lorena, M., Lampe, D.J., Martin, E., Moro, C.V., Povelones, M., Short, S., Steven, B., Xu, J., Paustian, T.D., Rondon, M.R., Hughes, G.L., Coon, K.L., Heinz, E. 2023. MosAIC: An annotated collection of mosquito-associated bacteria with high-quality genome assemblies. PLOS Biology, 22(11), e3002897. https://doi.org/10.1371/journal.pbio.3002897
    Press: UW-Madison Press Release
  7. Sommer, A.J., Kettner, J.E., Coon, K.L. 2024. Stable flies are bona fide carriers of mastitis-associated bacteria. mSphere, pp.e00336-24. https://doi.org/10.1128/msphere.00336-24
    Press: ASM Press Release
  8. Arellano, A.A., Young, E.B., Coon, K.L., 2024. An inquiline mosquito modulates microbial diversity and function in an aquatic microecosystem. Molecular Ecology, 33(7), p.e17314. https://doi.org/10.1111/mec.17314
  9. Hegde, S., Brettell, L.E., Quek, S., Etebari, K., Saldaña, M.A., Asgari, S., Coon, K.L., Heinz, E., Hughes, G.L., 2024. Aedes aegypti gut transcriptomes respond differently to microbiome transplants from field‐caught or laboratory‐reared mosquitoes. Environmental Microbiology, 26(2), p.e16576. https://doi.org/10.1111/1462-2920.16576
  10. Kang, Z., Martinson, V.G., Wang, Y., Coon, K.L., Valzania, L. and Strand, M.R., 2024. Increased environmental microbial diversity reduces the disease risk of a mosquitocidal pathogen. Mbio, 15(1), pp.e02726-23. https://doi.org/10.1128/mbio.02726-23
  11. Zhao, S.Y., Hughes, G.L., Coon, K.L., 2023. A cryopreservation method to recover laboratory-and field-derived bacterial communities from mosquito larval habitats. PLOS Neglected Tropical Diseases, 17(4), p.e0011234. https://doi.org/10.1371/journal.pntd.0011234
  12. Coon, K.L., Hegde, S., Hughes, G.L., 2022. Interspecies microbiome transplantation recapitulates microbial acquisition in mosquitoes. Microbiome, 10(1), p.58. https://doi.org/10.1186/s40168-022-01256-5
  13. Arellano, A.A. & Coon, K.L., 2022. Bacterial communities in carnivorous pitcher plants colonize and persist in inquiline mosquitoes. Animal Microbiome, 4(1), p.13.
    https://doi.org/10.1186/s42523-022-00164-1
  14. Tawidian, P., Coon, K.L., Jumpponen, A., Cohnstaedt, L.W. and Michel, K., 2021. Host-environment interplay shapes fungal diversity in mosquitoes. Msphere, 6(5), pp.10-1128. https://doi.org/10.1128/msphere.00646-21
  15. Coon, K.L., Valzania, L., Brown, M.R., Strand, M.R. 2020. Predaceous Toxorhynchites mosquitoes require a living gut microbiota to develop. Proc. R. Soc. B. 287(1919):20192705. https://doi.org/10.1098/rspb.2019.2705 (Selected for cover)
  16. Raymann, K., Coon, K.L., Shaffer, Z., Salisbury, S., Moran, N.A. 2018. Pathogenicity of Serratia marcescens strains in honey bees. mBio 9(5):e01649-18. https://doi.org/10.1128/mbio.01649-18
  17. Valzania, L., Martinson, V.E., Harrison, R., Boyd, B., Coon, K.L., Brown, M.R., Strand, M.R. 2018. Both living bacteria and eukaryotes in the mosquito gut promote growth of larvae. PLoS Negl. Trop. Dis. 12(7):e0006638. https://doi.org/10.1371/journal.pntd.0006638
  18. Valzania, L., Coon, K.L., Vogel, K.J., Brown, M.R., Strand, M.R. 2018. Hypoxia-induced transcription factor signaling is essential for larval growth of the mosquito Aedes aegyptiProc. Natl. Acad. Sci. U.S.A. 115(3):457-65. https://doi.org/10.1073/pnas.1719063115
  19. Coon, K.L., Valzania, L., McKinney, D.A., Vogel, K.J., Brown, M.R., Strand, M. R. 2017. Bacteria-mediated hypoxia functions as a signal for mosquito development. Proc. Natl. Acad. Sci. U.S.A. 114(27):E5362-9. https://doi.org/10.1073/pnas.1702983114
  20. Vogel, K.J., Valzania, L., Coon, K.L., Brown, M.R., Strand, M.R. 2017. Transcriptome sequencing reveals large-scale changes in axenic Aedes aegypti larvae. PLoS Negl. Trop. Dis. 11(1):e0005273. https://doi.org/10.1371/journal.pntd.0005273
  21. Coon, K.L., Brown, M.R., Strand, M.R. 2016. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 25(22):5806-26. https://doi.org/10.1111/mec.13877
  22. Coon, K.L., Brown, M.R., Strand, M.R. 2016. Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasit. Vectors 9(1):375. https://doi.org/10.1186/s13071-016-1660-9
  23. Coon, K.L., Vogel, K.J., Brown, M.R., Strand, M.R. 2014. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23(11):2727-39. https://doi.org/10.1111/mec.12771

Book Chapters & Reviews

  1. Medina Muñoz, M., Nichols, H.L.,Coon, K.L., 2025. Microbiota isolate collections: A key to global vector-borne disease control. PLoS biology, 23(3), p.e3003078. https://doi.org/10.1371/journal.pbio.3003078
  2. Arellano, A.A., Sommer, A.J., Coon, K.L., 2023. Beyond canonical models: why a broader understanding of Diptera-microbiota interactions is essential for vector-borne disease control. Evolutionary ecology, 37(1), pp.165-188. https://doi.org/10.1007/s10682-022-10197-2
  3. Cansado-Utrilla, C., Zhao, S.Y., McCall, P., Coon, K.L., Hughes, G.L. 2021. The microbiome and mosquito vectorial capacity: Rich potential for discovery and translation. Microbiome 9:111. https://doi.org/10.1186/s40168-021-01073-2
  4. Coon, K.L., Strand, M.R. 2021. Gut microbiome assembly and function in mosquitoes. In Drake, J.M., Bonsall, M.B., Strand, M.R. (Eds.), Population Biology of Vector-Borne Diseases. Oxford University Press, pp. 227-43.
  5. Vogel, K.J., Coon, K.L. 2020. Functions and mechanisms of symbionts of insect disease vectors. In K.M. Oliver, J.A. Russell (Eds.), Advances in Insect Physiology, Volume 58: Mechanisms Underlying Microbial Symbiosis, pp. 233-75. Academic Press, Cambridge, MA USA.

*Lab members are in bold