Preprints
-
Sommer, A. J., Worley, T. K., Sapountzis, P., & Coon, K. L. (2025). Comparative genomics reveals phylogenetic intermixing of Stomoxys fly, manure, and bovine mastitis-associated bacteria in dairy settings. bioRxiv, 2025-01. https://doi.org/10.1101/2025.01.31.635862
Research publications
- Sommer, A.J., Skarlupka, J.H., Teseo, S., Otani, S., Suen, G., Coon, K.L., Sapountzis, P., 2025. Genomic evidence for flies as carriers of zoonotic pathogens on dairy farms. npj Biofilms and Microbiomes, 11(1), pp.1-11. https://doi.org/10.1038/s41522-025-00685-y
- Díaz, S., Avila, F.W., Coon, K.L., 2025. Differential fitness effects of gut and reproductive tract bacteria in larval and adult stages of the yellow fever mosquito, Aedes aegypti. Acta Tropica, 265, p.107615. https://doi.org/10.1016/j.actatropica.2025.107615
- Sommer, A.J., Deblois, C.L., Tu, A.D., Suen, G., Coon, K.L., 2025. Opportunistic pathogens are prevalent across the culturable exogenous and endogenous microbiota of stable flies captured at a dairy facility. Veterinary Research, 56, p.40. https://doi.org/10.1186/s13567-025-01458-3
- Sommer, A.J., Kettner, J.E., Worley, T.K., Petrick, J., Haynie, C., Coon, K.L., 2025. Prevalence of antimicrobial resistance phenotypes and genes in stable fly-and manure-derived bacterial isolates from clinically relevant taxa in dairy settings. Journal of Applied Microbiology, 136(2), p.lxaf025. https://doi.org/10.1093/jambio/lxaf025
- Zhao, S. Y., Sommer, A. J., Bartlett, D., Harbison, J. E., Irwin, P., & Coon, K. L. (2024). Microbiota Composition Associates With Mosquito Productivity Outcomes in Belowground Larval Habitats. Molecular Ecology, e17614. https://doi.org/10.1111/mec.17614
- Foo, A., Brettell, L.E., Nichols, H.L., 2022 UW-Madison Capstone in Microbiology Students, Medina Munoz, M., Lysne, J., Dhokiya, V., Hoque, A.F., Brackney, D.E., Caragata, E.P., Hutchinson, M., Jacobs-Lorena, M., Lampe, D.J., Martin, E., Moro, C.V., Povelones, M., Short, S., Steven, B., Xu, J., Paustian, T.D., Rondon, M.R., Hughes, G.L., Coon, K.L., Heinz, E. 2023. MosAIC: An annotated collection of mosquito-associated bacteria with high-quality genome assemblies. PLOS Biology, 22(11), e3002897. https://doi.org/10.1371/journal.pbio.3002897
Press: UW-Madison Press Release - Sommer, A.J., Kettner, J.E., Coon, K.L. 2024. Stable flies are bona fide carriers of mastitis-associated bacteria. mSphere, pp.e00336-24. https://doi.org/10.1128/msphere.00336-24
Press: ASM Press Release - Arellano, A.A., Young, E.B., Coon, K.L., 2024. An inquiline mosquito modulates microbial diversity and function in an aquatic microecosystem. Molecular Ecology, 33(7), p.e17314. https://doi.org/10.1111/mec.17314
- Hegde, S., Brettell, L.E., Quek, S., Etebari, K., Saldaña, M.A., Asgari, S., Coon, K.L., Heinz, E., Hughes, G.L., 2024. Aedes aegypti gut transcriptomes respond differently to microbiome transplants from field‐caught or laboratory‐reared mosquitoes. Environmental Microbiology, 26(2), p.e16576. https://doi.org/10.1111/1462-2920.16576
- Kang, Z., Martinson, V.G., Wang, Y., Coon, K.L., Valzania, L. and Strand, M.R., 2024. Increased environmental microbial diversity reduces the disease risk of a mosquitocidal pathogen. Mbio, 15(1), pp.e02726-23. https://doi.org/10.1128/mbio.02726-23
-
Zhao, S.Y., Hughes, G.L., Coon, K.L., 2023. A cryopreservation method to recover laboratory-and field-derived bacterial communities from mosquito larval habitats. PLOS Neglected Tropical Diseases, 17(4), p.e0011234. https://doi.org/10.1371/journal.pntd.0011234
- Coon, K.L., Hegde, S., Hughes, G.L., 2022. Interspecies microbiome transplantation recapitulates microbial acquisition in mosquitoes. Microbiome, 10(1), p.58. https://doi.org/10.1186/s40168-022-01256-5
- Arellano, A.A. & Coon, K.L., 2022. Bacterial communities in carnivorous pitcher plants colonize and persist in inquiline mosquitoes. Animal Microbiome, 4(1), p.13.
https://doi.org/10.1186/s42523-022-00164-1 -
Tawidian, P., Coon, K.L., Jumpponen, A., Cohnstaedt, L.W. and Michel, K., 2021. Host-environment interplay shapes fungal diversity in mosquitoes. Msphere, 6(5), pp.10-1128. https://doi.org/10.1128/msphere.00646-21
- Coon, K.L., Valzania, L., Brown, M.R., Strand, M.R. 2020. Predaceous Toxorhynchites mosquitoes require a living gut microbiota to develop. Proc. R. Soc. B. 287(1919):20192705. https://doi.org/10.1098/rspb.2019.2705 (Selected for cover)
- Raymann, K., Coon, K.L., Shaffer, Z., Salisbury, S., Moran, N.A. 2018. Pathogenicity of Serratia marcescens strains in honey bees. mBio 9(5):e01649-18. https://doi.org/10.1128/mbio.01649-18
- Valzania, L., Martinson, V.E., Harrison, R., Boyd, B., Coon, K.L., Brown, M.R., Strand, M.R. 2018. Both living bacteria and eukaryotes in the mosquito gut promote growth of larvae. PLoS Negl. Trop. Dis. 12(7):e0006638. https://doi.org/10.1371/journal.pntd.0006638
- Valzania, L., Coon, K.L., Vogel, K.J., Brown, M.R., Strand, M.R. 2018. Hypoxia-induced transcription factor signaling is essential for larval growth of the mosquito Aedes aegypti. Proc. Natl. Acad. Sci. U.S.A. 115(3):457-65. https://doi.org/10.1073/pnas.1719063115
- Coon, K.L., Valzania, L., McKinney, D.A., Vogel, K.J., Brown, M.R., Strand, M. R. 2017. Bacteria-mediated hypoxia functions as a signal for mosquito development. Proc. Natl. Acad. Sci. U.S.A. 114(27):E5362-9. https://doi.org/10.1073/pnas.1702983114
- Vogel, K.J., Valzania, L., Coon, K.L., Brown, M.R., Strand, M.R. 2017. Transcriptome sequencing reveals large-scale changes in axenic Aedes aegypti larvae. PLoS Negl. Trop. Dis. 11(1):e0005273. https://doi.org/10.1371/journal.pntd.0005273
- Coon, K.L., Brown, M.R., Strand, M.R. 2016. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 25(22):5806-26. https://doi.org/10.1111/mec.13877
- Coon, K.L., Brown, M.R., Strand, M.R. 2016. Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasit. Vectors 9(1):375. https://doi.org/10.1186/s13071-016-1660-9
- Coon, K.L., Vogel, K.J., Brown, M.R., Strand, M.R. 2014. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23(11):2727-39. https://doi.org/10.1111/mec.12771
Book Chapters & Reviews
- Medina Muñoz, M., Nichols, H.L.,Coon, K.L., 2025. Microbiota isolate collections: A key to global vector-borne disease control. PLoS biology, 23(3), p.e3003078. https://doi.org/10.1371/journal.pbio.3003078
- Arellano, A.A., Sommer, A.J., Coon, K.L., 2023. Beyond canonical models: why a broader understanding of Diptera-microbiota interactions is essential for vector-borne disease control. Evolutionary ecology, 37(1), pp.165-188. https://doi.org/10.1007/s10682-022-10197-2
- Cansado-Utrilla, C., Zhao, S.Y., McCall, P., Coon, K.L., Hughes, G.L. 2021. The microbiome and mosquito vectorial capacity: Rich potential for discovery and translation. Microbiome 9:111. https://doi.org/10.1186/s40168-021-01073-2
- Coon, K.L., Strand, M.R. 2021. Gut microbiome assembly and function in mosquitoes. In Drake, J.M., Bonsall, M.B., Strand, M.R. (Eds.), Population Biology of Vector-Borne Diseases. Oxford University Press, pp. 227-43.
- Vogel, K.J., Coon, K.L. 2020. Functions and mechanisms of symbionts of insect disease vectors. In K.M. Oliver, J.A. Russell (Eds.), Advances in Insect Physiology, Volume 58: Mechanisms Underlying Microbial Symbiosis, pp. 233-75. Academic Press, Cambridge, MA USA.
*Lab members are in bold